We have located links that may give you full text access.
Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions.
Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2024 April 24
The effect of temperature on the solubility of lead-bearing solid phases in water distribution systems for different water chemistry conditions remains unclear although lead concentrations are known to vary seasonally. The study objective is to explore the effect of temperature on the solubility of the lead(II) carbonate hydrocerussite under varying pH and DIC conditions. This is achieved through batch dissolution experiments conducted at multiple pHs (6-10) and DIC concentrations (20-200 mg CL-1 ) at temperatures ranging from 5 to 40 °C. A thermodynamic model was also applied to evaluate the model's ability to predict temperature effects on lead(II) carbonate solubility including solid phase transformations. In general, increasing temperature increased total dissolved lead at high pHs and the effect of temperature was greater for high DIC conditions, particularly for pH > 8. Temperature also influenced the pH at which the dominant lead(II) solid phase switched from hydrocerussite to cerussite (occurred between pH 7.25 to 10). Finally, the model was able to capture the overall trends observed despite thermodynamic data limitations. While this study focuses on a simple lead solid-aqueous system, findings provide important insights regarding the way in which temperature and water chemistry interact to affect lead concentrations.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app