Add like
Add dislike
Add to saved papers

Metformin modulates autophagic pathway in renal fibrosis induced by carbon tetrachloride in adult male albino rats.

BACKGROUNDS: Chronic kidney disease (CKD) is a global public health problem. All progressive chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis. Exposure to high concentrations of carbon tetrachloride (including vapor) can destroy the kidneys. Autophagy played an important role in maintaining the homeostasis of organs. Impaired autophagy was frequently associated with renal damage and fibrosis. Recent data suggests that metformin protects against a variety of kidney disorders.

AIM: To investigate the protective role of metformin on carbon tetrachloride induced renal damage via autophagy pathway.

MATERIALS AND METHODS: Forty adult male albino rats were divided into four equal groups (10 rats, each); Group 1: control group. Group 2: olive oil group received olive oil 1.5 mg/kg twice weekly S.C for 12 weeks. Group 3: The ccl4 group, the rats were received ccl4 1.5 mg/kg twice weekly S.C for 12 weeks. Group 4: CCL4 and Metformin group received concomitant treatment of CCL4, 1.5 mg/kg twice weekly S.C and 100 mg/kg/day Metformin orally for 12 weeks. After sacrifice, kidneys were taken from all animal groups and processed for light and electron microscopy, immunological studies and biochemical tests. Statistical analysis was done.

RESULTS: Administration of ccl4 resulted in histopathological changes in the kidney tissue in the form of areas of tissue destruction, inflammatory cell infiltration, congestion and fibrosis. Ultrastructurally, irregular thickening of GBM was observed. Improvement was noticed with concomitant treatment of ccl4 with metformin.

CONCLUSION: Metformin administration can modulate histological and biochemical effects in the renal tissue induced by of ccl4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app