Add like
Add dislike
Add to saved papers

The Influence of Pedaling Frequency on Blood Lactate Accumulation in Cycling Sprints.

Anaerobic performance diagnostics in athletes relies on accurate measurements of blood lactate concentration and the calculation of blood lactate accumulation resulting from glycolytic processes. In this study, we investigated the impact of pedaling frequency on blood lactate accumulation during 10-second maximal isokinetic cycling sprints. Thirteen trained males completed five 10-second maximal isokinetic cycling sprints on a bicycle ergometer at different pedaling frequencies (90 rpm, 110 rpm, 130 rpm, 150 rpm, 170 rpm) with continuous power and frequency measurement. Capillary blood samples were taken pre-exercise and up to 30 minutes post-exercise to determine the maximum blood lactate concentration.Blood lactate accumulation was calculated as the difference between maximal post-exercise and pre-start blood lactate concentration. Repeated measurement ANOVA with Bonferroni-adjusted post hoc t-tests revealed significant progressive increases in maximal blood lactate concentration and accumulation with higher pedaling frequencies (p<0.001; η2 +>+0.782).The findings demonstrate a significant influence of pedaling frequency on lactate accumulation, emphasizing its relevance in anaerobic diagnostics. Optimal assessment of maximal lactate formation rate is suggested to require a pedaling frequency of at least 130 rpm or higher, while determining metabolic thresholds using the maximal lactate formation rate may benefit from a slightly lower pedaling frequency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app