Add like
Add dislike
Add to saved papers

Study on synthesis of ursodeoxycholic acid by reduction of 7-ketolithocholic acid in double aprotic solvents and molecular simulations.

Ursodeoxycholic acid (UDCA) is not only safer than chenodeoxycholic acid in the treatment of hepatobiliary diseases, but also has a wide range of applications in Acute Kidney Injury and Parkinson's Disease. The purpose of this experiment is to improve the conversion rate of 7-ketocholic acid (7K-LCA) and the yield of ursodeoxycholic acid in aprotic solvents during electrochemical reduction process. Three aprotic solvents were investigated as electrolytes. 1,3-Dimethyl-2-imidazolidinone (DMI) has a stable five-membered ring structure, and 7K-LCA has undergone two nucleophilic reactions and "Walden" inversion, the 7K-LCK was stereoselectively reduced to UDCA. Hexamethylphosphoramide (HMPA) and 1,3-methyl-3,4,5,6-Tetrahydro-2(1H)-pyrimidinone (DMPU) can be attacked by chloride ions to produce by-products. Molecular orbital theory-based simulations were conducted to study the reducibility of three aprotic solvents [hexamethylphosphoramide (HMPA), 1,3-methyl-3,4,5,6-Tetrahydro-2(1H)-pyrimidinone (DMPU), and 1,3-Dimethyl-2-imidazolidinone (DMI)] in combination with experiments. Choose the best solvent based on the simulation results, the electrolysis reaction can be carried out by applying current and voltage when lithium chloride is used as electrolytes. Calculations using Materials Studio showed that Cu, Pb, Hg-Cu, and Ni exhibited the highest binding energies to the substrate in this system. Using Cu as the electrode when the solvent is a 1:1 mix of DMI and HMPA, the conversion rate of 7-ketocholic acid (could reach 98%, the yield of ursodeoxycholic acid was up to 80%. Under the same conditions, linear voltammetry was performed on the electrochemical workstation to study the electrolysis behavior, and the obtained results were consistent with the experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app