Journal Article
Review
Add like
Add dislike
Add to saved papers

Graph-based algorithms to dissect long-distance water-mediated H-bond networks for conformational couplings in GPCRs.

Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app