Add like
Add dislike
Add to saved papers

Identifying Macrophage-Related Genes in Ulcerative Colitis Using Weighted Coexpression Network Analysis and Machine Learning.

Ulcerative colitis (UC) is an inflammatory bowel disease of unknown cause that typically affects the colon and rectum. Innate intestinal immunity, including macrophages, plays a significant role in the pathological development of UC. Using the CIBERSORT algorithm, we observed elevated levels of 22 types of immune cell infiltrates, as well as increased M1 and decreased M2 macrophages in UC compared to normal colonic mucosa. Weighted gene coexpression network analysis (WGCNA) was used to identify modules associated with macrophages and UC, resulting in the identification of 52 macrophage-related genes (MRGs) that were enriched in macrophages at single-cell resolution. Consensus clustering based on these 52 MRGs divided the integrated UC cohorts into three subtypes. Machine learning algorithms were used to identify ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (SLC6A14), and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in the training set, and their diagnostic value was validated in independent validation sets. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) revealed the main biological effects, and that interleukin-17 was one of several signaling pathways enriched by the three genes. We also constructed a competitive endogenous RNA (CeRNA) network reflecting a potential posttranscriptional regulatory mechanism. Expression of diagnostic markers was validated in vivo and in biospecimens, and our immunohistochemistry (IHC) results confirmed that HMGCS2 gradually decreased during the transformation of UC to colorectal cancer. In conclusion, ENPP1, SLC6A14, and HMGCS2 are associated with macrophages and the progression of UC pathogenesis and have good diagnostic value for patients with UC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app