Add like
Add dislike
Add to saved papers

Clinical feasibility of post-contrast accelerated 3D T1-Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) with iterative denoising for intracranial enhancing lesions: a retrospective study.

Acta Radiologica 2024 April 17
BACKGROUND: Post-contrast T1-Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) is the preferred 3D T1 spin-echo sequence for evaluating brain metastases, regardless of the prolonged scan time.

PURPOSE: To evaluate the application of accelerated post-contrast T1-SPACE with iterative denoising (ID) for intracranial enhancing lesions in oncologic patients.

MATERIAL AND METHODS: For evaluation of intracranial lesions, 108 patients underwent standard and accelerated T1-SPACE during the same imaging session. Two neuroradiologists evaluated the overall image quality, artifacts, degree of enhancement, mean contrast-to-noise ratiolesion/parenchyma , and number of enhancing lesions for standard and accelerated T1-SPACE without ID.

RESULTS: Although there was a significant difference in the overall image quality and mean contrast-to-noise ratiolesion/parenchyma between standard and accelerated T1-SPACE without ID and accelerated SPACE with and without ID, there was no significant difference between standard and accelerated T1-SPACE with ID. Accelerated T1-SPACE showed more artifacts than standard T1-SPACE; however, accelerated T1-SPACE with ID showed significantly fewer artifacts than accelerated T1-SPACE without ID. Accelerated T1-SPACE without ID showed a significantly lower number of enhancing lesions than standard- and accelerated T1-SPACE with ID; however, there was no significant difference between standard and accelerated T1-SPACE with ID, regardless of lesion size.

CONCLUSION: Although accelerated T1-SPACE markedly decreased the scan time, it showed lower overall image quality and lesion detectability than the standard T1-SPACE. Application of ID to accelerated T1-SPACE resulted in comparable overall image quality and detection of enhancing lesions in brain parenchyma as standard T1-SPACE. Accelerated T1-SPACE with ID may be a promising replacement for standard T1-SPACE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app