Add like
Add dislike
Add to saved papers

A new hybrid prediction model of COVID-19 daily new case data.

With the emergence of new mutant corona virus disease 2019 (COVID-19) strains such as Delta and Omicron, the number of infected people in various countries has reached a new high. Accurate prediction of the number of infected people is of far-reaching sig Nificance to epidemiological prevention in all countries of the world. In order to improve the prediction accuracy of COVID-19 daily new case data, a new hybrid prediction model of COVID-19 is proposed, which consists of four modules: decomposition, complexity judgment, prediction and error correction. Firstly, singular spectrum decomposition is used to decompose the COVID-19 data into singular spectrum components (SSC). Secondly, the complexity judgment is innovatively divided into high-complexity SSC and low-complexity SSC by neural network estimation time entropy. Thirdly, an improved LSSVM by GODLIKE optimization algorithm, named GLSSVM, is proposed to improve its prediction accuracy. Then, each low-complexity SSC is predicted by ARIMA, and each high-complexity SSC is predicted by GLSSVM, and the prediction error of each high-complexity SSC is predicted by GLSSVM. Finally, the predicted results are combined and reconstructed. Simulation experiments in Japan, Germany and Russia show that the proposed model has the highest prediction accuracy and the lowest prediction error. Diebold Mariano (DM) test is introduced to evaluate the model comprehensively. Taking Japan as an example, compared with ARIMA prediction model, the RMSE, average error and MAPE of the proposed model are reduced by 93.17%, 91.42% and 81.20% respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app