We have located links that may give you full text access.
The utility of human two plus one small pronucleated zygotes (2.1PN) based on clinical outcomes and the focused ploidy analysis.
Journal of Assisted Reproduction and Genetics 2024 April 13
PURPOSE: Are human embryos arising from two plus one small pronucleated zygotes, called 2.1 pronuclei (PN), clinically useful?
METHODS: In a retrospective embryo cohort study and prospective experimental study, a total of 287 cycles in which at least one 2.1PN was identified in the fertilization check were included. Embryonic development and clinical outcome were compared for the 1395 2PN zygotes and 304 2.1PN zygotes that were siblings. All embryos were individually cultured in time-lapse systems. Twenty-five 2.1PN-derived blastocysts, donated for research, were used in focused single-nucleotide variant ploidy analysis to identify the distribution pattern of heterozygosity.
RESULTS: The average diameter of PN was 24.9 ± 2.4 µm for large PN and 10.2 ± 2.4 µm for small PN; 79.9% of small PN was derived from female pronuclei. Blastocyst formation rate and good-quality blastocyst rate were significantly lower with 2.1PN embryos than with 2PN embryos (40.0% vs. 57.7%, 21.4% vs. 33.5%, respectively). A total of 13 embryos derived from 2.1PN were transferred, and three healthy babies were born. In ploidy constitutions of trophectoderm (TE), 2.1PN-derived blastocyst TE was shown to be mostly diploid (95.8%, 23/24), and only one blastocyst showed triploid.
CONCLUSIONS: It was suggested that 2.1PN embryos have lower embryonic developmental potential than 2PN embryos, but most of the 2.1PN were diploid, indicating that they are likely to be clinically usable. It is recommended to perform embryo transfer following a combination of PGT-A and ploidy analysis.
METHODS: In a retrospective embryo cohort study and prospective experimental study, a total of 287 cycles in which at least one 2.1PN was identified in the fertilization check were included. Embryonic development and clinical outcome were compared for the 1395 2PN zygotes and 304 2.1PN zygotes that were siblings. All embryos were individually cultured in time-lapse systems. Twenty-five 2.1PN-derived blastocysts, donated for research, were used in focused single-nucleotide variant ploidy analysis to identify the distribution pattern of heterozygosity.
RESULTS: The average diameter of PN was 24.9 ± 2.4 µm for large PN and 10.2 ± 2.4 µm for small PN; 79.9% of small PN was derived from female pronuclei. Blastocyst formation rate and good-quality blastocyst rate were significantly lower with 2.1PN embryos than with 2PN embryos (40.0% vs. 57.7%, 21.4% vs. 33.5%, respectively). A total of 13 embryos derived from 2.1PN were transferred, and three healthy babies were born. In ploidy constitutions of trophectoderm (TE), 2.1PN-derived blastocyst TE was shown to be mostly diploid (95.8%, 23/24), and only one blastocyst showed triploid.
CONCLUSIONS: It was suggested that 2.1PN embryos have lower embryonic developmental potential than 2PN embryos, but most of the 2.1PN were diploid, indicating that they are likely to be clinically usable. It is recommended to perform embryo transfer following a combination of PGT-A and ploidy analysis.
Full text links
Related Resources
Trending Papers
Mineralocorticoid Receptor Antagonists in Heart Failure: An Update.Circulation. Heart Failure 2024 November 25
Hemodialysis Vascular Access: Core Curriculum 2025.American Journal of Kidney Diseases 2024 December 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app