Add like
Add dislike
Add to saved papers

Predicting post-treatment symptom severity for adults receiving psychological therapy in routine care for generalised anxiety disorder: a machine learning approach.

Psychiatry Research 2024 April 10
Approximately half of generalised anxiety disorder (GAD) patients do not recover from first-line treatments, and no validated prediction models exist to inform individuals or clinicians of potential treatment benefits. This study aimed to develop and validate an accurate and explainable prediction model of post-treatment GAD symptom severity. Data from adults receiving treatment for GAD in eight Improving Access to Psychological Therapies (IAPT) services (n=15,859) were separated into training, validation and holdout datasets. Thirteen machine learning algorithms were compared using 10-fold cross-validation, against two simple clinically relevant comparison models. The best-performing model was tested on the holdout dataset and model-specific explainability measures identified the most important predictors. A Bayesian Additive Regression Trees model out-performed all comparison models (MSE=16.54 [95 % CI=15.58; 17.51]; MAE=3.19; R²=0.33, including a single predictor linear regression model: MSE=20.70 [95 % CI=19.58; 21.82]; MAE=3.94; R²=0.14). The five most important predictors were: PHQ-9 anhedonia, GAD-7 annoyance/irritability, restlessness and fear items, then the referral-assessment waiting time. The best-performing model accurately predicted post-treatment GAD symptom severity using only pre-treatment data, outperforming comparison models that approximated clinical judgement and remaining within the GAD-7 error of measurement and minimal clinically important differences. This model could inform treatment decision-making and provide desired information to clinicians and patients receiving treatment for GAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app