We have located links that may give you full text access.
A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.
PLoS Medicine 2024 April
BACKGROUND: Older adults with diabetes are at high risk of severe hypoglycemia (SH). Many machine-learning (ML) models predict short-term hypoglycemia are not specific for older adults and show poor precision-recall. We aimed to develop a multidimensional, electronic health record (EHR)-based ML model to predict one-year risk of SH requiring hospitalization in older adults with diabetes.
METHODS AND FINDINGS: We adopted a case-control design for a retrospective territory-wide cohort of 1,456,618 records from 364,863 unique older adults (age ≥65 years) with diabetes and at least 1 Hong Kong Hospital Authority attendance from 2013 to 2018. We used 258 predictors including demographics, admissions, diagnoses, medications, and routine laboratory tests in a one-year period to predict SH events requiring hospitalization in the following 12 months. The cohort was randomly split into training, testing, and internal validation sets in a 7:2:1 ratio. Six ML algorithms were evaluated including logistic-regression, random forest, gradient boost machine, deep neural network (DNN), XGBoost, and Rulefit. We tested our model in a temporal validation cohort in the Hong Kong Diabetes Register with predictors defined in 2018 and outcome events defined in 2019. Predictive performance was assessed using area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC) statistics, and positive predictive value (PPV). We identified 11,128 SH events requiring hospitalization during the observation periods. The XGBoost model yielded the best performance (AUROC = 0.978 [95% CI 0.972 to 0.984]; AUPRC = 0.670 [95% CI 0.652 to 0.688]; PPV = 0.721 [95% CI 0.703 to 0.739]). This was superior to an 11-variable conventional logistic-regression model comprised of age, sex, history of SH, hypertension, blood glucose, kidney function measurements, and use of oral glucose-lowering drugs (GLDs) (AUROC = 0.906; AUPRC = 0.085; PPV = 0.468). Top impactful predictors included non-use of lipid-regulating drugs, in-patient admission, urgent emergency triage, insulin use, and history of SH. External validation in the HKDR cohort yielded AUROC of 0.856 [95% CI 0.838 to 0.873]. Main limitations of this study included limited transportability of the model and lack of geographically independent validation.
CONCLUSIONS: Our novel-ML model demonstrated good discrimination and high precision in predicting one-year risk of SH requiring hospitalization. This may be integrated into EHR decision support systems for preemptive intervention in older adults at highest risk.
METHODS AND FINDINGS: We adopted a case-control design for a retrospective territory-wide cohort of 1,456,618 records from 364,863 unique older adults (age ≥65 years) with diabetes and at least 1 Hong Kong Hospital Authority attendance from 2013 to 2018. We used 258 predictors including demographics, admissions, diagnoses, medications, and routine laboratory tests in a one-year period to predict SH events requiring hospitalization in the following 12 months. The cohort was randomly split into training, testing, and internal validation sets in a 7:2:1 ratio. Six ML algorithms were evaluated including logistic-regression, random forest, gradient boost machine, deep neural network (DNN), XGBoost, and Rulefit. We tested our model in a temporal validation cohort in the Hong Kong Diabetes Register with predictors defined in 2018 and outcome events defined in 2019. Predictive performance was assessed using area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC) statistics, and positive predictive value (PPV). We identified 11,128 SH events requiring hospitalization during the observation periods. The XGBoost model yielded the best performance (AUROC = 0.978 [95% CI 0.972 to 0.984]; AUPRC = 0.670 [95% CI 0.652 to 0.688]; PPV = 0.721 [95% CI 0.703 to 0.739]). This was superior to an 11-variable conventional logistic-regression model comprised of age, sex, history of SH, hypertension, blood glucose, kidney function measurements, and use of oral glucose-lowering drugs (GLDs) (AUROC = 0.906; AUPRC = 0.085; PPV = 0.468). Top impactful predictors included non-use of lipid-regulating drugs, in-patient admission, urgent emergency triage, insulin use, and history of SH. External validation in the HKDR cohort yielded AUROC of 0.856 [95% CI 0.838 to 0.873]. Main limitations of this study included limited transportability of the model and lack of geographically independent validation.
CONCLUSIONS: Our novel-ML model demonstrated good discrimination and high precision in predicting one-year risk of SH requiring hospitalization. This may be integrated into EHR decision support systems for preemptive intervention in older adults at highest risk.
Full text links
Related Resources
Trending Papers
Treatment of hyponatremia: comprehension and best clinical practice.Clinical and Experimental Nephrology 2025 January 23
Allergic rhinitis.Allergy, Asthma, and Clinical Immunology 2024 December 27
How We Treat ANCA-Associated Vasculitis: A Focus on the Maintenance Therapy.Journal of Clinical Medicine 2025 January 2
Aldosterone and Potassium in Heart Failure: Overcoming This Major Impediment in Clinical Practice.Cardiac Failure Review 2024
Insomnia in older adults: A review of treatment options.Cleveland Clinic Journal of Medicine 2025 January 2
Antiseizure medication use in acute symptomatic seizures: A narrative review.Epilepsia 2025 January 22
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app