Add like
Add dislike
Add to saved papers

Fosgonimeton attenuates amyloid-beta toxicity in preclinical models of Alzheimer's disease.

Positive modulation of hepatocyte growth factor (HGF) signaling may represent a promising therapeutic strategy for Alzheimer's disease (AD) based on its multimodal neurotrophic, neuroprotective, and anti-inflammatory effects addressing the complex pathophysiology of neurodegeneration. Fosgonimeton is a small-molecule positive modulator of the HGF system that has demonstrated neurotrophic and pro-cognitive effects in preclinical models of dementia. Herein, we evaluate the neuroprotective potential of fosgonimeton, or its active metabolite, fosgo-AM, in amyloid-beta (Aβ)-driven preclinical models of AD, providing mechanistic insight into its mode of action. In primary rat cortical neurons challenged with Aβ (Aβ1-42 ), fosgo-AM treatment significantly improved neuronal survival, protected neurite networks, and reduced tau hyperphosphorylation. Interrogation of intracellular events indicated that cortical neurons treated with fosgo-AM exhibited a significant decrease in mitochondrial oxidative stress and cytochrome c release. Following Aβ injury, fosgo-AM significantly enhanced activation of pro-survival effectors ERK and AKT, and reduced activity of GSK3β, one of the main kinases involved in tau hyperphosphorylation. Fosgo-AM also mitigated Aβ-induced deficits in Unc-like kinase 1 (ULK1) and Beclin-1, suggesting a potential effect on autophagy. Treatment with fosgo-AM protected cortical neurons from glutamate excitotoxicity, and such effects were abolished in the presence of an AKT or MEK/ERK inhibitor. In vivo, fosgonimeton administration led to functional improvement in an intracerebroventricular Aβ25-35 rat model of AD, as it significantly rescued cognitive function in the passive avoidance test. Together, our data demonstrate the ability of fosgonimeton to counteract mechanisms of Aβ-induced toxicity. Fosgonimeton is currently in clinical trials for mild-to-moderate AD (NCT04488419; NCT04886063).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app