We have located links that may give you full text access.
Journal Article
Review
From Bench to Bedside With Large Language Models: AJR Expert Panel Narrative Review.
AJR. American Journal of Roentgenology 2024 April 10
Large language models (LLMs) hold immense potential to revolutionize radiology. However, their integration into practice requires careful consideration. Artificial intelligence (AI) chatbots and general-purpose LLMs have potential pitfalls related to privacy, transparency, and accuracy, limiting their current clinical readiness. Thus, LLM-based tools must be optimized for radiology practice to overcome these limitations. While research and validation for radiology applications remain in their infancy, commercial products incorporating LLMs are becoming available alongside promises of transforming practice. To help radiologists navigate this landscape, this AJR Expert Panel Narrative Review provides a multidimensional perspective on LLMs, encompassing considerations from bench (development and optimization) to bedside (use in practice). At present, LLMs are not autonomous entities that can replace expert decision-making, and radiologists remain responsible for the content of their reports. Patient-facing tools, particularly medical AI chatbots, require additional guardrails to ensure safety and prevent misuse. Still, if responsibly implemented, LLMs are well-positioned to transform efficiency and quality in radiology. Radiologists must be well-informed and proactively involved in guiding the implementation of LLMs in practice to mitigate risks and maximize benefits to patient care.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app