Add like
Add dislike
Add to saved papers

Using Patient-Specific Contrast Enhancement Optimizer Simulation Software During the Transcatheter Aortic Valve Implantation-Computed Tomography Angiography in Patients With Aortic Stenosis.

OBJECTIVES: This study assessed whether patient-specific contrast enhancement optimizer simulation software (p-COP) can reduce the contrast material (CM) dose compared with the conventional body weight (BW)-tailored scan protocol during transcatheter aortic valve implantation-computed tomography angiography (TAVI-CTA) in patients with aortic stenosis.

METHODS: We used the CM injection protocol selected by the p-COP in group A (n = 30). p-COP uses an algorithm that concerns data on an individual patient's cardiac output. Group B (n = 30) was assigned to the conventional BW-tailored CM injection protocol group. We compared the CM dose, CM amount, injection rate, and computed tomography (CT) values in the abdominal aorta between the 2 groups and classified them as acceptable (>280 Hounsfield units (HU)) or unacceptable (<279 HU) based on the optimal CT value and visualization scores for TAVI-CTA. We used the Mann-Whitney U test to compare patient characteristics and assess the interpatient variability of subjects in both groups.

RESULTS: Group A received 56.2 mL CM and 2.6 mL/s of injection, whereas group B received 76.9 mL CM and 3.4 mL/s of injection (P < 0.01). The CT value for the abdominal aorta at the celiac level was 287.0 HU in group A and 301.7HU in group B (P = 0.46). The acceptable (>280 HU) and unacceptable (<280 HU) CT value rates were 22 and 8 patients in group A and 24 and 6 patients in group B, respectively (P = 0.76). We observed no significant differences in the visualization scores between groups A and B (visualization score = 3, P = 0.71).

CONCLUSION: The utilization of p-COP may decrease the CM dosage and injection rate by approximately 30% in individuals with aortic stenosis compared with the body-weight-tailored scan protocol during TAVI-CTA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app