Add like
Add dislike
Add to saved papers

Origami nanogap electrodes for reversible nanoparticle trapping.

Nanoscale 2024 April 10
We present a facile desktop fabrication method for origami-based nanogap indium tin oxide (ITO) electrokinetic particle traps, providing a simplified approach compared to traditional lithographic techniques and effective trapping of nanoparticles. Our approach involves bending ITO thin films on optically transparent polyethylene terephthalate (PET), creating an array of parallel nanogaps. By strategically introducing weak points through cut-sharp edges, we successfully controlled the spread of nanocracks. A single crack spanning the constriction width and splitting the conductive layers forms a nanogap that can effectively trap small nanoparticles after applying an alternating electric potential across the nanogap. We analyze the conditions for reversible trapping and optimal performance of the nanogap ITO electrodes with optical microscopy and electrokinetic impedance spectroscopy. Our findings highlight the potential of this facile fabrication method for the use of ITO at active electro-actuated traps in microfluidic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app