Add like
Add dislike
Add to saved papers

Involvement of ANO1 currents in pacemaking of PDGFRα-positive specialised smooth muscle cells in rat caudal epididymis.

The epididymal duct exhibits spontaneous phasic contractions (SPCs) to store and transport sperm. Here, we explored molecular identification of pacemaker cells driving SPCs in the caudal epididymal duct and also investigated properties of pacemaker currents underlying SPCs focusing on ANO1 Ca2+ -activated Cl- channels (CaCCs). Immunohistochemistry was performed to visualise the distribution of platelet-derived growth factor receptor α (PDGFRα)- or ANO1-positive cells in the rat caudal epididymal duct. Perforated whole-cell patch clamp technique was applied to enzymatically isolated epididymal cells, while SPCs were recorded with video edge-tracking technique. Immunohistochemistry revealed the distribution of α-smooth muscle actin (α-SMA)-positive cells co-expressing both PDGFRα and ANO1 in the innermost smooth muscle layer. Approximately one-third of isolated epididymis cells exhibited spontaneous transient inward currents (STICs) at the holding potential -60 mV. The reversal potential for STICs was close to the calculated chloride equivalent potential depending on intracellular Cl- concentrations. Ani9 (3 µM), the ANO1 specific inhibitor, decreased both amplitude and frequency of STICs, while cyclopiazonic acid (CPA, 30 µM), a sarco-/endoplasmic reticulum Ca2+ -ATPase (SERCA) inhibitor, abolished STICs. Ani9 (3 or 10 µM) reduced the frequency of SPCs without changing their amplitude. Thus, PDGFRα+ , ANO1+ specialised smooth muscle cells (SMCs) appear to function as pacemaker cells to electrically drive epididymal SPCs by generating ANO1-dependnet STICs. STICs arising from spontaneous Ca2+ release from intracellular Ca2+ store and subsequent opening of ANO1 result in depolarisations that spread into adjacent SMCs where L-type voltage-dependent Ca2+ channels are activated to develop SPCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app