Add like
Add dislike
Add to saved papers

Insulin-like growth factor 1 knockdown attenuates high glucose-induced podocyte injury by promoting the JAK2/STAT signalling-mediated autophagy.

Nephrology 2024 April 9
PURPOSE: Podocyte injury plays a crucial role in the development of diabetic nephropathy (DN). A high serum level of insulin-like growth factor 1 (IGF-1) has been observed in patients with DN. This paper is to study the role and mechanism of IGF-1 in high glucose (HG)-induced podocyte injury.

METHODS: Mouse podocytes MPC-5 were treated with HG to establish a DN model in vitro. db/db diabetic mice and db/m nondiabetic mice were used to evaluate the IGF-1 role in vivo. Western blotting was used for measuring protein levels of IGF-1 receptor, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway-related markers, podocyte markers podocin and nephrin, apoptosis- and autophagy-related markers in MPC-5 cells. Immunofluorescence staining was implemented for measuring the expression of nephrin and the autophagy marker LC3. Flow cytometry was used for detecting podocyte apoptosis.

RESULTS: IGF-1 expression was increased in HG-stimulated MPC-5 cells and the kidney of db/db diabetic mice compared with corresponding controls. Knocking down IGF-1 downregulated IGF-1R and inhibited JAK2/STAT signalling pathway in HG-treated MPC-5 cells and db/db diabetic mice. IGF-1 silencing attenuated HG-induced podocyte injury, apoptosis and reduction in autophagy. Activating the JAK2/STAT signalling pathway or inhibiting autophagy reversed the effects of IGF-1 silencing on HG-treated MPC-5 cells.

CONCLUSION: Knocking down IGF-1 alleviates HG-induced podocyte injury and apoptosis by inactivating the JAK2/STAT signalling pathway and enhancing autophagy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app