Add like
Add dislike
Add to saved papers

β-cell insulin resistance plays a causal role in fat-induced β-cell dysfunction in vitro and in vivo.

Endocrinology 2024 April 6
In the classical insulin target tissues liver, muscle and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in β-cells where they play a role in β-cell function. Therefore, inhibition of the insulin/IGF-1 pathway may be involved in fat-induced β-cell dysfunction. To address the role of β-cell insulin resistance in FFA-induced β-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 h in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent β-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of β-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt phosphorylation. Next, mice with β-cell specific deletion of PTEN (negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 h, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of β-cell function in vivo, ex vivo and in vitro. In mice, β-cell specific deletion of PTEN protected against oleate-induced β-cell dysfunction in vivo and ex vivo. These data support the hypothesis that β-cell insulin resistance plays a causal role in FFA-induced β-cell dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app