Add like
Add dislike
Add to saved papers

Bamboo-like nitrogen-doped carbon supported chlorine-doped Fe 2 P as an antibacterial oxygen reduction catalyst.

Nanoscale 2024 April 6
Bio-inspiration and biomimetics offer guidance for designing and synthesizing advanced catalysts for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). Herein, a chlorine-doped Fe2 P supported by nitrogen-doped carbon (Cl-Fe2 P/NC) catalyst was designed and prepared based on imitating the bamboo structure. The electronegative chlorine captured the electron transfer from Fe2 P and transferred it to NC through carbon nanotubes (CNTs). The antibacterial chlorine inhibited the cathode biofilm formation to enhance the ion transport. Cl-Fe2 P/NC achieved a half-wave potential of 0.91 V and an onset potential of 0.99 V versus a reversible hydrogen electrode. After 500 h of reaction, the MFCs assembled by the Cl-Fe2 P/NC cathode achieved a maximum power density of 1505 mW m-2 . This work provides insights into the design of advanced materials through bio-inspiration and biomimicry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app