Add like
Add dislike
Add to saved papers

Regulating Lars2 in mitochondria: A potential Alzheimer's therapy by inhibiting tau phosphorylation.

Driven by the scarcity of effective treatment options in clinical settings, the present study aimed to identify a new potential target for Alzheimer's disease (AD) treatment. We focused on Lars2, an enzyme synthesizing mitochondrial leucyl-tRNA, and its role in maintaining mitochondrial function. Bioinformatics analysis of human brain transcriptome data revealed downregulation of Lars2 in AD patients compared to healthy controls. During in vitro experiments, the knockdown of Lars2 in mouse neuroblastoma cells (neuro-2a cells) and primary cortical neurons led to morphological changes and decreased density in mouse hippocampal neurons. To explore the underlying mechanisms, we investigated how downregulated Lars2 expression could impede the phosphatidylinositol 3-kinase/protein kinase B (PI3K-AKT) pathway, thereby mitigating AKT's inhibitory effect on glycogen synthase kinase 3 beta (GSK3β). This led to the activation of GSK3β, causing excessive phosphorylation of Tau protein and subsequent neuronal degeneration. During in vivo experiments, knockout of lars2 in hippocampal neurons confirmed cognitive impairment through the Barnes maze test, the novel object recognition test, and nest-building experiments. Additionally, immunofluorescence assays indicated an increase in p-tau, atrophy in the hippocampal region, and a decrease in neurons following Lars2 knockout. Taken together, our findings indicate that Lars2 represents a promising therapeutic target for AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app