Add like
Add dislike
Add to saved papers

BPI-GNN: Interpretable brain network-based psychiatric diagnosis and subtyping.

NeuroImage 2024 April 1
Converging evidence increasingly suggests that psychiatric disorders, such as major depressive disorder (MDD) and autism spectrum disorder (ASD), are not unitary diseases, but rather heterogeneous syndromes that involve diverse, co-occurring symptoms and divergent responses to treatment. This clinical heterogeneity has hindered the progress of precision diagnosis and treatment effectiveness in psychiatric disorders. In this study, we propose BPI-GNN, a new interpretable graph neural network (GNN) framework for analyzing functional magnetic resonance images (fMRI), by leveraging the famed prototype learning. In addition, we introduce a novel generation process of prototype subgraph to discover essential edges of distinct prototypes and employ total correlation (TC) to ensure the independence of distinct prototype subgraph patterns. BPI-GNN can effectively discriminate psychiatric patients and healthy controls (HC), and identify biological meaningful subtypes of psychiatric disorders. We evaluate the performance of BPI-GNN against 11 popular brain network classification methods on three psychiatric datasets and observe that our BPI-GNN always achieves the highest diagnosis accuracy. More importantly, we examine differences in clinical symptom profiles and gene expression profiles among identified subtypes and observe that our identified brain-based subtypes have the clinical relevance. It also discovers the subtype biomarkers that align with current neuro-scientific knowledge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app