Add like
Add dislike
Add to saved papers

Strong Protection by 4-Hydroxyestrone against Erastin-Induced Ferroptotic Cell Death in Estrogen Receptor-Negative Human Breast Cancer Cells: Evidence for Protein Disulfide Isomerase as a Mechanistic Target for Protection.

Biochemistry 2024 April 3
Ferroptosis is a recently identified form of regulated cell death, characterized by excessive iron-dependent lipid peroxidation. Recent studies have demonstrated that protein disulfide isomerase (PDI) is an important mediator of chemically induced ferroptosis and also a new target for protection against ferroptosis-associated cell death. In the present study, we identified that 4-hydroxyestrone (4-OH-E1 ), a metabolic derivative of endogenous estrogen, is a potent small-molecule inhibitor of PDI, and can strongly protect against chemically induced ferroptotic cell death in the estrogen receptor-negative MDA-MB-231 human breast cancer cells. Pull-down and CETSA assays demonstrated that 4-OH-E1 can directly bind to PDI both in vitro and in intact cells. Computational modeling analysis revealed that 4-OH-E1 forms two hydrogen bonds with PDI His256, which is essential for its binding interaction and thus inhibition of PDI's catalytic activity. Additionally, PDI knockdown attenuates the protective effect of 4-OH-E1 as well as cystamine (a known PDI inhibitor) against chemically induced ferroptosis in human breast cancer cells. Importantly, inhibition of PDI by 4-OH-E1 and cystamine or PDI knockdown by siRNAs each markedly reduces iNOS activity and NO accumulation, which has recently been demonstrated to play an important role in erastin-induced ferroptosis. In conclusion, this study demonstrates that 4-OH-E1 is a novel inhibitor of PDI and can strongly inhibit ferroptosis in human breast cancer cells in an estrogen receptor-independent manner. The mechanistic understanding gained from the present study may also aid in understanding the estrogen receptor-independent cytoprotective actions of endogenous estrogen metabolites in many noncancer cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app