Add like
Add dislike
Add to saved papers

A Novel Molten Salt Mediated Synthesis of Mesoporous Metal Oxides with High Crystallization.

ACS Central Science 2024 March 28
The controlled synthesis of mesoporous metal oxides remains a great challenge because the uncontrolled assembly process and high-temperature crystallization can easily destroy the mesostructure. Herein, we develop a facile, versatile, low-cost, and controllable molten salt assisted assembly strategy to synthesize mesoporous metal oxides (e.g., CeO2 , ZrO2 , SnO2 , Li2 TiO3 ) with high surface area (115-155 m2 /g) and uniform mesopore size (3.0 nm). We find this molten salt mediated assembly enables the desolvation of the precursors and forms bare metal ions, enhances their coordination interaction with the surfactant, and promotes their assembly into a mesostructure. Furthermore, the molten salt assisted crystallization process can lower the collision probability of the target metal atom, inhibit its further growth into large crystals, and achieve a well-maintained mesostructure with high crystallization. Furthermore, this method can be expanded to synthesize various structured mesoporous metal oxides, including hollow spheres, nanotubes, and nanosheets by introducing the carbon template. The obtained mesoporous CeO2 microspheres loaded with Cu species exhibit excellent antibacterial performance and superior catalytic activity for the hydrogenation of nitrophenol with high conversion and cycling stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app