Add like
Add dislike
Add to saved papers

Synthesis and Single Crystal X-ray Diffraction Structure of an Indium Arsenide Nanocluster.

ACS Central Science 2024 March 28
The discovery of magic-sized clusters as intermediates in the synthesis of colloidal quantum dots has allowed for insight into formation pathways and provided atomically precise molecular platforms for studying the structure and surface chemistry of those materials. The synthesis of monodisperse InAs quantum dots has been developed through the use of indium carboxylate and As(SiMe3 )3 as precursors and documented to proceed through the formation of magic-sized intermediates. Herein, we report the synthesis, isolation, and single-crystal X-ray diffraction structure of an InAs nanocluster that is ubiquitous across reports of InAs quantum dot synthesis. The structure, In26 As18 (O2 CR)24 (PR'3 )3 , differs substantially from previously reported semiconductor nanocluster structures even within the III-V family. However, it can be structurally linked to III-V and II-VI cluster structures through the anion sublattice. Further analysis using variable temperature absorbance spectroscopy and support from computation deepen our understanding of the reported structure and InAs nanomaterials as a whole.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app