Add like
Add dislike
Add to saved papers

ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters.

ACS Central Science 2024 March 27
Zeolites, nanoporous aluminosilicates with well-defined porous structures, are versatile materials with applications in catalysis, gas separation, and ion exchange. Hydrothermal synthesis is widely used for zeolite production, offering control over composition, crystallinity, and pore size. However, the intricate interplay of synthesis parameters necessitates a comprehensive understanding of synthesis-structure relationships to optimize the synthesis process. Hitherto, public zeolite synthesis databases only contain a subset of parameters and are small in scale, comprising up to a few thousand synthesis routes. We present ZeoSyn, a dataset of 23,961 zeolite hydrothermal synthesis routes, encompassing 233 zeolite topologies and 921 organic structure-directing agents (OSDAs). Each synthesis route comprises comprehensive synthesis parameters: 1) gel composition, 2) reaction conditions, 3) OSDAs, and 4) zeolite products. Using ZeoSyn, we develop a machine learning classifier to predict the resultant zeolite given a synthesis route with >70% accuracy. We employ SHapley Additive exPlanations (SHAP) to uncover key synthesis parameters for >200 zeolite frameworks. We introduce an aggregation approach to extend SHAP to all building units. We demonstrate applications of this approach to phase-selective and intergrowth synthesis. This comprehensive analysis illuminates the synthesis parameters pivotal in driving zeolite crystallization, offering the potential to guide the synthesis of desired zeolites. The dataset is available at https://github.com/eltonpan/zeosyn_dataset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app