Add like
Add dislike
Add to saved papers

Protein Structure-Based Organic Chemistry-Driven Ligand Design from Ultralarge Chemical Spaces.

ACS Central Science 2024 March 28
Ultralarge chemical spaces describing several billion compounds are revolutionizing hit identification in early drug discovery. Because of their size, such chemical spaces cannot be fully enumerated and require ad-hoc computational tools to navigate them and pick potentially interesting hits. We here propose a structure-based approach to ultralarge chemical space screening in which commercial chemical reagents are first docked to the target of interest and then directly connected according to organic chemistry and topological rules, to enumerate drug-like compounds under three-dimensional constraints of the target. When applied to bespoke chemical spaces of different sizes and chemical complexity targeting two receptors of pharmaceutical interest (estrogen β receptor, dopamine D3 receptor), the computational method was able to quickly enumerate hits that were either known ligands (or very close analogs) of targeted receptors as well as chemically novel candidates that could be experimentally confirmed by in vitro binding assays. The proposed approach is generic, can be applied to any docking algorithm, and requires few computational resources to prioritize easily synthesizable hits from billion-sized chemical spaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app