Add like
Add dislike
Add to saved papers

Automatic ARDS surveillance with chest X-ray recognition using convolutional neural networks.

OBJECTIVE: This study aims to design, validate and assess the accuracy a deep learning model capable of differentiation Chest X-Rays between pneumonia, acute respiratory distress syndrome (ARDS) and normal lungs.

MATERIALS AND METHODS: A diagnostic performance study was conducted using Chest X-Ray images from adult patients admitted to a medical intensive care unit between January 2003 and November 2014. X-ray images from 15,899 patients were assigned one of three prespecified categories: "ARDS", "Pneumonia", or "Normal".

RESULTS: A two-step convolutional neural network (CNN) pipeline was developed and tested to distinguish between the three patterns with sensitivity ranging from 91.8% to 97.8% and specificity ranging from 96.6% to 98.8%. The CNN model was validated with a sensitivity of 96.3% and specificity of 96.6% using a previous dataset of patients with Acute Lung Injury (ALI)/ARDS.

DISCUSSION: The results suggest that a deep learning model based on chest x-ray pattern recognition can be a useful tool in distinguishing patients with ARDS from patients with normal lungs, providing faster results than digital surveillance tools based on text reports.

CONCLUSION: A CNN-based deep learning model showed clinically significant performance, providing potential for faster ARDS identification. Future research should prospectively evaluate these tools in a clinical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app