Add like
Add dislike
Add to saved papers

Senescence and aging differentially alter key metabolic pathways in murine brain microglia.

Neuroscience Letters 2024 March 27
Microglia, the resident immune cells of the central nervous system, are critically involved in maintaining brain homeostasis. With age, microglia display morphological and functional alterations that have been associated with cognitive decline and neurodegeneration. Although microglia seem to participate in an increasing number of biological processes which require a high energy demand, little is known about their metabolic regulation under physiological and pathophysiological conditions and during aging/senescence. Here, we determined mRNA expression levels of critical rate limiting enzymes in several key metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis in association with oxidative phosphorylation in microglia, both under aging and senescent conditions. We found strong evidence for different metabolic changes occuring in senescent vs. aged microglia cells. While senescent microglia display a hypermetabolic state as indicated by increased expression of key enzymes involved in glycolysis and pentose phosphate pathway, aging microglia are rather in a state of hypometabolism. Our findings indicate that studies involving aging and senescent microglia require a clear differentiation between these microglial states due to profound metabolic differences observed here. Understanding metabolic changes in senescent and aged microglia may lead to novel strategies to decrease over-activation of these cells due to aging, which is associated to the process of inflamm-aging and neurodegeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app