Add like
Add dislike
Add to saved papers

GLP-1 receptor agonists alleviate colonic inflammation by modulating intestinal microbiota and the function of group 3 innate lymphoid cells.

Immunology 2024 March 28
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), which are drugs used for treating type 2 diabetes, have been reported to exert anti-inflammatory effects on inflammatory bowel disease (IBD), the mechanism of which remains elusive. Here, we report that GLP-1RAs ameliorate dextran sulfate sodium (DSS)-induced colitis in both wild-type and T/B-cell-deficient mice through modulating group 3 innate lymphoid cells (ILC3s), a subset of innate lymphoid cells that regulate intestinal immunity. GLP-1RAs promote IL-22 production by ILC3, and the protective effect of GLP-1RAs on DSS-induced colitis was abrogated in ILC3-deficient RORgtgfp/gfp mice. Furthermore, the treatment effect of GLP-RAs on colitis, as well as the generation of IL-22-producing ILC3s by GLP-RAs, is dependent on the gut microbiota. GLP-1RAs increase the abundance of Firmicutes and Proteobacteria in the gut, particularly beneficial bacteria such as Lactobacillus reuteri, and decrease the abundance of enteropathogenic Staphylococcus bacteria. The untargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) of faecal metabolites further revealed enrichment of N,N-dimethylsphingosine (DMS), an endogenous metabolite derived from sphingosine, in the GLP-1RA-treated group. Strikingly, DMS ameliorates colitis while promoting intestinal IL-22-producing ILC3s. Taken together, our findings show that GLP-1RAs exert a therapeutic effect on colitis possibly by regulating the microbiota-DMS-IL-22+ ILC3 axis, highlighting the potential beneficial role of GLP-RAs in inflammatory intestinal disorders with diabetes complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app