We have located links that may give you full text access.
Emerging mechanisms in the redox regulation of mitochondrial cytochrome c oxidase assembly and function.
Biochemical Society Transactions 2024 March 25
In eukaryotic cells, mitochondria perform cellular respiration through a series of redox reactions ultimately reducing molecular oxygen to water. The system responsible for this process is the respiratory chain or electron transport system (ETS) composed of complexes I-IV. Due to its function, the ETS is the main source of reactive oxygen species (ROS), generating them on both sides of the mitochondrial inner membrane, i.e. the intermembrane space (IMS) and the matrix. A correct balance between ROS generation and scavenging is important for keeping the cellular redox homeostasis and other important aspects of cellular physiology. However, ROS generated in the mitochondria are important signaling molecules regulating mitochondrial biogenesis and function. The IMS contains a large number of redox sensing proteins, containing specific Cys-rich domains, that are involved in ETS complex biogenesis. The large majority of these proteins function as cytochrome c oxidase (COX) assembly factors, mainly for the handling of copper ions necessary for the formation of the redox reactive catalytic centers. A particular case of ROS-regulated COX assembly factor is COA8, whose intramitochondrial levels are increased by oxidative stress, promoting COX assembly and/or protecting the enzyme from oxidative damage. In this review, we will discuss the current knowledge concerning the role played by ROS in regulating mitochondrial activity and biogenesis, focusing on the COX enzyme and with a special emphasis on the functional role exerted by the redox sensitive Cys residues contained in the COX assembly factors.
Full text links
Related Resources
Trending Papers
Updated evidence on cardiovascular and renal effects of GLP-1 receptor agonists and combination therapy with SGLT2 inhibitors and finerenone: a narrative review and perspectives.Cardiovascular Diabetology 2024 November 15
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app