Add like
Add dislike
Add to saved papers

Patterns of genetic variation and local adaptation of a native herbivore to a lethal invasive plant.

Molecular Ecology 2024 March 22
Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app