Add like
Add dislike
Add to saved papers

Quantitative MRI assessment of joint effusion using T2-relaxometry at 3 Tesla: a feasibility and reproducibility study.

Skeletal Radiology 2024 March 22
OBJECTIVE: T2-relaxometry could differentiate between physiological and haemorrhagic joint effusion (≥ 5% blood) in vitro. Are quantitative T2-relaxation time measurements of synovial fluid feasible and reproducible in vivo in clinically bleed-free joints of men with haemophilia?

MATERIALS AND METHODS: In this cross-sectional study, we measured T2-relaxation times of synovial fluid in clinically bleed-free ankles, knees or elbows of men with severe haemophilia A using a T2-mapping sequence (duration ≤ 7 min) at 3 Tesla MRI. Manual and circular regions of interest (ROI) were drawn in the synovial fluid of each joint by two independent observers to measure T2-relaxation times. Measurement feasibility was expressed as the success rate of the measurements by both observers. The interobserver and intraobserver reproducibility of the measurements were evaluated by the intraclass correlation coefficient of absolute agreement (ICC) and the limits of agreement (LoA) from Bland Altman analysis.

RESULTS: We evaluated 39 clinically bleed-free joints (11 ankles, 12 knees, 16 elbows) of 39 men (median age, 24 years; range 17-33) with severe haemophilia A. The success rate of the T2-measurements was ≥ 90%. Interobserver reliability was good to excellent (manual ROI: ICC = 0.92, 95% CI 0.76-0.97; circular ROI: ICC = 0.82, 95% CI 0.66-0.91) and interobserver agreement was adequate (manual ROI: LoA = 71 ms; circular ROI: LoA = 146 ms). Intraobserver reliability was good to excellent (manual ROI: ICC = 0.78, 95% CI - 0.06-0.94; circular RO: ICC = 0.99, 95% CI 0.98-0.99) and intraobserver agreement was good (manual ROI: LoA = 63 ms; circular ROI: LoA = 41 ms).

CONCLUSION: T2-relaxometry of synovial fluid in haemophilia patients is feasible with good interobserver and intraobserver reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app