Add like
Add dislike
Add to saved papers

Research on predicting hematoma expansion in spontaneous intracerebral hemorrhage based on deep features of the VGG-19 network.

PURPOSE: To construct a clinical noncontrastive computed tomography (NCCT) deep learning joint model for predicting early hematoma expansion (HE) after cerebral hemorrhage (sICH) and evaluate its predictive performance.

METHODS: All 254 patients with primary cerebral hemorrhage from January 2017 to December 2022 in the General Hospital of the Western Theater Command were included. According to the criteria of hematoma enlargement exceeding 33% or the volume exceeding 6 ml, the patients were divided into the HE group and the hematoma non-enlargement (NHE) group. Multiple models and the 10-fold cross-validation method were used to screen the most valuable features and model the probability of predicting HE. The area under the curve (AUC) was used to analyze the prediction efficiency of each model for HE.

RESULTS: They were randomly divided into a training set of 204 cases in an 8:2 ratio and 50 cases of the test set. The clinical imaging deep feature joint model (22 features) predicted the area under the curve of HE as follows: clinical Navie Bayes model AUC 0.779, traditional radiology logistic regression (LR) model AUC 0.818, deep learning LR model AUC 0.873, and clinical NCCT deep learning multilayer perceptron model AUC 0.921.

CONCLUSION: The combined clinical imaging deep learning model has a high predictive effect for early HE in sICH patients, which is helpful for clinical individualized assessment of the risk of early HE in sICH patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app