Add like
Add dislike
Add to saved papers

Treatment of Sleep Apnea and Reduction in Blood Pressure: The Role of Heart Rate Response and Hypoxic Burden.

Hypertension 2024 March 21
BACKGROUND: Obstructive sleep apnea is associated with increased blood pressure (BP). Obstructive sleep apnea treatment reduces BP with substantial variability, not explained by the apnea-hypopnea index, partly due to inadequate characterization of obstructive sleep apnea's physiological consequences, such as oxygen desaturation, cardiac autonomic response, and suboptimal treatment efficacy. We sought to examine whether a high baseline heart rate response (ΔHR), a marker of high cardiovascular risk in obstructive sleep apnea, predicts a larger reduction in posttreatment systolic BP (SBP). Furthermore, we aimed to assess the extent to which a reduction in SBP is explained by a treatment-related reduction in hypoxic burden (HB).

METHODS: ΔHR and HB were measured from pretreatment and posttreatment polygraphy, followed by a 24-hour BP assessment in 168 participants treated with continuous positive airway pressure or nocturnal supplemental oxygen from the HeartBEAT study (Heart Biomarker Evaluation in Apnea Treatment). Multiple linear regression models assessed whether high versus mid (reference) ΔHR predicted a larger reduction in SBP (primary outcome) and whether there was an association between treatment-related reductions in SBP and HB.

RESULTS: A high versus mid ΔHR predicted improvement in SBP (adjusted estimate, 5.8 [95% CI, 1.0-10.5] mm Hg). Independently, a greater treatment-related reduction in HB was significantly associated with larger reductions in SBP (4.2 [95% CI, 0.9-7.5] mm Hg per 2 SD treatment-related reduction in HB). Participants with substantial versus minimal treatment-related reductions in HB had a 6.5 (95% CI, 2.5-10.4) mm Hg drop in SBP.

CONCLUSIONS: A high ΔHR predicted a more favorable BP response to therapy. Furthermore, the magnitude of the reduction in BP was partly explained by a greater reduction in HB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app