Add like
Add dislike
Add to saved papers

Effect of unpredictable timing on the hip, knee, and ankle kinematics and center of mass during deceleration tasks.

BACKGROUND: Unpredictable stopping or deceleration tasks are crucial to prevent ACL injury. The purpose of this study was to reveal differences and relationships in kinematics during different deceleration tasks with and without anticipation.

METHODS: Twenty-four collegiate athletes were recruited. Three commercial video cameras were used to capture frontal and sagittal lower-extremity kinematics. Participants were instructed to perform three deceleration tasks: 1) anticipated stopping and running backward at a point indicated previously (SRB-P); 2) anticipated stopping and running backward in front of a badminton net (SRB-N); and 3) unanticipated stopping and running backward upon random flashing of a light (SRB-U). Differences and relationships between hip, knee, and ankle kinematics at stopping (SS) and deceleration steps (DS) and the height of the great trochanter (HGT) at SS were analyzed.

RESULTS: For all tasks, the knee flexion angle was less than 25° at SS. There were no significant differences in hip, knee, and ankle kinematics between tasks. HGT during SRB-U was higher than that in the other tasks at DS. Hip flexion angle at SS and DS was significantly correlated with HGT at SS. During SRB_P and SRB_N, only knee flexion angle at DS was significantly correlated with HGT at SS.

CONCLUSIONS: The deceleration task in this study, SRB, causes a low knee-flexion angle at SS. The COM remained higher during unanticipated stopping, which is related only to hip flexion angle during the task. Knee flexion movement does not contribute to lowering COM during an unpredictable deceleration task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app