We have located links that may give you full text access.
Decreased moment of inertia of the lower limb facilitates a rapid hip internal rotation in a simulated foot impact maneuver. A laboratory-controlled biomechanical study for a precursor mechanism of noncontact anterior cruciate ligament injury.
Journal of Sports Medicine and Physical Fitness 2024 March 4
BACKGROUND: Anterior cruciate ligament injury frequently occurs in the deceleration with the knee-extended position. In addition, a rapid hip internal rotation is concomitantly observed. However, how the extended knee position induces the hip internal rotation is unclear.
METHODS: Sixteen healthy participants performed the simulated foot impact task on the experimental chair. To vary the knee flexion angle, the following four-foot placement positions relative to the pelvis segment, i.e.: 1) near; 2) middle; 3) far; and 4) far + heel strike, were tested. The reflective marker positions and the ground reaction force (GRF) data were collected. The moment of inertia of the entire lower limb around its long axis as well as the peak hip internal rotation angular velocity were calculated and compared among four conditions (Wilcoxon Signed-Rank Test with Bonferroni correction, P<0.0083).
RESULTS: As the knee extended from the near to far + heel strike condition, the moment of inertia of the entire lower limb significantly decreased and hip internal rotation angular velocity significantly increased (P<0.001).
CONCLUSIONS: The extended knee position with far foot placement from torso reduces the inertial resistance of the entire lower limb around its long axis and is vulnerable to the hip internal rotation.
METHODS: Sixteen healthy participants performed the simulated foot impact task on the experimental chair. To vary the knee flexion angle, the following four-foot placement positions relative to the pelvis segment, i.e.: 1) near; 2) middle; 3) far; and 4) far + heel strike, were tested. The reflective marker positions and the ground reaction force (GRF) data were collected. The moment of inertia of the entire lower limb around its long axis as well as the peak hip internal rotation angular velocity were calculated and compared among four conditions (Wilcoxon Signed-Rank Test with Bonferroni correction, P<0.0083).
RESULTS: As the knee extended from the near to far + heel strike condition, the moment of inertia of the entire lower limb significantly decreased and hip internal rotation angular velocity significantly increased (P<0.001).
CONCLUSIONS: The extended knee position with far foot placement from torso reduces the inertial resistance of the entire lower limb around its long axis and is vulnerable to the hip internal rotation.
Full text links
Related Resources
Trending Papers
Central venous catheter insertion site and infection prevention in 2024.Intensive Care Medicine 2024 September 30
Novel Insights into Diabetic Kidney Disease.International Journal of Molecular Sciences 2024 September 23
2024 ESC Guidelines for the management of elevated blood pressure and hypertension.European Heart Journal 2024 August 30
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app