Add like
Add dislike
Add to saved papers

Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.

The leaching laboratory experiment uses the artificial neural network (ANN) to predict and evaluate copper and cobalt recovery. This study aimed to evaluate the efficacy of using the shrinking core model in conjunction with an artificial neural network (ANN) as part of a machine learning strategy to improve the leaching process of cobalt (II) and copper (II). The numerous factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, are adjusted using an ANN with several layers, feed-forward, and back-propagation learning methods. These variables are in charge of the high cobalt recovery during the reduced sulfuric acid leaching procedure. The ANN algorithm has 10 hidden layers, 5 input variables describing the leaching parameters, and two neurons as output layers corresponding to copper and cobalt leaching recovery. The optimum conditions were found to be acid concentration of 100 g/L, leaching duration 120 min, temperature 55 °C, soil-to-solution ratio of 1:40 g/mL, and stirring speed 300 rpm. The optimized trained neural networks tested, trained, and validated steps are represented by R 2 values of 0.94, 0.99, 0.97, and 0.97, respectively, equating to 97.5% copper recovery and 95.4% cobalt recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app