Add like
Add dislike
Add to saved papers

The role of suspended biomass in PFAS enrichment in wastewater treatment foams.

Water Research 2024 Februrary 21
Foaming in aerated bioreactors at wastewater treatment plants (WWTPs) has been identified as an operational issue for decades. However, the affinity of per- and polyfluoroalkyl substances (PFAS) for air-liquid interfaces suggests that foam harvesting has the potential to become a sustainable method for PFAS removal from sewage. Aerated bioreactors' foams are considered three-phase systems, comprising air, aqueous and solid components, the latter consisting of activated sludge biomass. To achieve a comprehensive understanding of the capability of aerated bioreactors' foams to enrich PFAS, we analysed PFAS concentrations from WWTPs in both the solid and aqueous phases of the collapsed foams (foamate) and underlying bulk mixed liquors. Our findings show that PFAS enrichment occurs not only in the aqueous phase but also in the solid phase of the foamate. This suggests that previous field studies that only analysed the aqueous phase may have underestimated the capability of the aerated bioreactors' foams to enrich PFAS. Fractions of PFOA and PFOS sorbed to the solid phase of the foamate can be as high as 60 % and 95 %, respectively. Our findings highlight the importance of implementing effective foamate management strategies that consider both the aqueous and solid phases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app