Add like
Add dislike
Add to saved papers

Predicting Major Adverse Events in Patients Undergoing Transcatheter Left Atrial Appendage Occlusion.

BACKGROUND: The National Cardiovascular Data Registry Left Atrial Appendage Occlusion Registry (LAAO) includes the vast majority of transcatheter LAAO procedures performed in the United States. The objective of this study was to develop a model predicting adverse events among patients undergoing LAAO with Watchman FLX.

METHODS: Data from 41 001 LAAO procedures with Watchman FLX from July 2020 to September 2021 were used to develop and validate a model predicting in-hospital major adverse events. Randomly selected development (70%, n=28 530) and validation (30%, n=12 471) cohorts were analyzed with 1000 bootstrapped samples, using forward stepwise logistic regression to create the final model. A simplified bedside risk score was also developed using this model.

RESULTS: Increased age, female sex, low preprocedure hemoglobin, no prior attempt at atrial fibrillation termination, and increased fall risk most strongly predicted in-hospital major adverse events and were included in the final model along with other clinically relevant variables. The median in-hospital risk-standardized adverse event rate was 1.50% (range, 1.03%-2.84%; interquartile range, 1.42%-1.64%). The model demonstrated moderate discrimination (development C-index, 0.67 [95% CI, 0.65-0.70] and validation C-index, 0.66 [95% CI, 0.62-0.70]) with good calibration. The simplified risk score was well calibrated with risk of in-hospital major adverse events ranging from 0.26% to 3.90% for a score of 0 to 8, respectively.

CONCLUSIONS: A transcatheter LAAO risk model using National Cardiovascular Data Registry and LAAO Registry data can predict in-hospital major adverse events, demonstrated consistency across hospitals and can be used for quality improvement efforts. A simple bedside risk score was similarly predictive and may inform shared decision-making.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app