Add like
Add dislike
Add to saved papers

Surface thermodynamics of yttrium titanate pyrochlore nanomaterials.

Nanoscale 2024 Februrary 23
Nanocrystalline pyrochlore materials have been investigated for their enhanced radiation tolerance as ceramic nuclear waste hosts. In this work, we study the thermodynamic driving force of nano-scale materials for radiation resistance. The size dependent thermodynamic properties of a series of Y2 Ti2 O7 nanoparticles were investigated. Samples were synthesized by a sol-gel method and characterized by synchrotron X-ray diffraction, BET analysis, and thermogravimetric analysis. The surface and interface enthalpies of Y2 Ti2 O7 were determined by high temperature oxide melt drop solution calorimetry to be 4.07 J m-2 and 3.04 J m-2 , respectively. The experimentally obtained surface energy is in good agreement with computationally derived average surface energies for yttrium and other rare-earth titanate pyrochlores. Theoretical links between nanoparticle stability, surface energy, and radiation resistance of pyrochlore materials were then explored.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app