Add like
Add dislike
Add to saved papers

Effect of phosphoric acid containing polyvinylpyrrolidone as protective etchant for dentin bonding.

STATEMENT OF PROBLEM: Phosphoric acid is commonly used in dentistry as an etchant but can result in excessive demineralization of dentin, a major contributor to the instability of dentin-bonded restorations. Nevertheless, research on the development of etchants that can reduce acid damage is sparse.

PURPOSE: The purpose of this in vitro study was to investigate the effects of polyvinylpyrrolidone-modified phosphoric acid on the dentin bonding of an etch-and-rinse adhesive.

MATERIAL AND METHODS: Protective etchants were prepared by adding polyvinylpyrrolidone to 35% phosphoric acid aqueous solutions: the 3 concentrations were 0.5% (P0.5% group), 1% (P1% group), and 2% (P2% group) w/v. The treatment agent of the control group (C) was 35% phosphoric acid gel. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), microhardness, microtensile bonding strength (µTBS), nanoleakage, and in situ zymography were used to evaluate the appearance of the protective etchant on dentin bonding. The results were analyzed with a 1-way ANOVA test (α=.05).

RESULTS: SEM showed no obviously exposed collagen fiber in the P1% and P2% groups. FTIR showed less demineralization of the dentin surface, and microhardness was higher after treatment with the protective etchant (P<.05). The µTBS of P1% (70 ±9.2 MPa) was the highest, and group C (44 ±5.8 MPa) was the lowest in all groups (P<.05). Moreover, there was weaker MMP activity in the P1% and P2% groups (P<.05).

CONCLUSIONS: This study demonstrated that the protective etchant effectively reduced demineralization, enhanced bond strength, and reduced nanoleakage and enzyme activity within the hybrid layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app