We have located links that may give you full text access.
Real-world evidence of heparin and citrate use in extracorporeal photopheresis: A hypothesis-generating data review of device settings and performance.
Journal of Clinical Apheresis 2024 Februrary
Extracorporeal photopheresis (ECP) is widely used for the treatment of cutaneous T-cell lymphoma, graft-vs-host disease, and other immune-related conditions. To avoid clotting during treatment, the ECP system used must be effectively primed with an anticoagulant. Heparin is the recommended anticoagulant for the THERAKOS CELLEX System, but acid citrate dextrose-A (ACDA) is often used. We compared system performance between these two anticoagulants for this ECP system. Deidentified data for ECP device performance were obtained at each treatment session, from automatically logged Smart Cards or labels completed by device operators. We compared the effects of ACDA or heparin on overall treatment duration, buffy coat (leukocyte) collection time, photoactivation time and the number of alarms and warnings. The variability in these parameters was also assessed. Data from 23 334 treat sessions were analyzed; ACDA was used in 34.4% and heparin in 65.6%. Overall, the ECP procedure duration, buffy coat collection time and photoactivation time were numerically similar regardless of whether ACDA or heparin was used, and regardless of needle mode. Photoactivation time variability was lower with ACDA compared with heparin in all needle modes. Among treatments that were completed automatically without any operator intervention, total treatment duration and photoactivation time were significantly reduced with ACDA use in both the double- and single-needle modes. The data presented indicate that, in both double- and single-needle modes, the THERAKOS® CELLEX® integrated ECP system performed similarly with ACDA compared to heparin, although ACDA demonstrated potential benefits in reducing variability in photoactivation time.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app