Add like
Add dislike
Add to saved papers

RAS G-domains allosterically contribute to the recognition of lipid headgroups and acyl chains.

Mutant RAS are major contributors to cancer and signal primarily from nanoclusters on the plasma membrane (PM). Their C-terminal membrane anchors are main features of membrane association. However, the same RAS isoform bound to different guanine nucleotides spatially segregate. Different RAS nanoclusters all enrich a phospholipid, phosphatidylserine (PS). These findings suggest more complex membrane interactions. Our electron microscopy-spatial analysis shows that wild-types, G12V mutants, and membrane anchors of isoforms HRAS, KRAS4A, and KRAS4B prefer distinct PS species. Mechanistically, reorientation of KRAS4B G-domain exposes distinct residues, such as Arg 135 in orientation state 1 (OS1) and Arg 73/Arg 102 in OS2, to the PM and differentially facilitates the recognition of PS acyl chains. Allele-specific oncogenic mutations of KRAS4B also shift G-domain reorientation equilibrium. Indeed, KRAS4BG12V, KRAS4BG12D, KRAS4BG12C, KRAS4BG13D, and KRAS4BQ61H associate with PM lipids with headgroup and acyl chain specificities. Distribution of these KRAS4B oncogenic mutants favors different nanoscale membrane topography. Thus, RAS G-domains allosterically facilitate membrane lateral distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app