We have located links that may give you full text access.
Reduced susceptibility to aztreonam-avibactam conferred by acquired AmpC-type β-lactamases in PBP3-modified Escherichia coli.
European Journal of Clinical Microbiology & Infectious Diseases 2024 Februrary 6
PURPOSE: Carbapenemase-producing Enterobacterales are a growing threat, and very few therapeutic options remain active against those multidrug resistant bacteria. Aztreonam is the molecule of choice against metallo-beta-lactamases (MBL) producers since it is not hydrolyzed by those enzymes, but the co-production of acquired plasmidic cephalosporinases or extended-spectrum β-lactamases leading to aztreonam resistance may reduce the efficacy of this molecule. Hence, the development of the aztreonam-avibactam (AZA) combination provides an interesting therapeutic alternative since avibactam inhibits the activity of both cephalosporinases and extended-spectrum β-lactamases. However, structural modifications of penicillin binding protein PBP3, the target of aztreonam, may lead to reduced susceptibility to aztreonam-avibactam.
METHODS: Here the impact of various plasmid-encoded AmpC-type β-lactamases (ACC-1, ACT-7, ACT-17, CMY-2, CMY-42, DHA-1, FOX-1, and FOX-5) on susceptibility to aztreonam-avibactam was evaluated using isogenic E. coli MG1655 strains harboring insertions in PBP3 (YRIN and YRIK). The inhibitory activity of various β-lactamase inhibitors (clavulanic acid, tazobactam, avibactam, relebactam, and vaborbactam) were also compared against these enzymes.
RESULTS: Hence, we showed that reduced susceptibility to AZA was due to the combined effect of both AmpC production and amino acid insertions in PBP3. The highest resistance level was achieved in strains possessing the insertions in PBP3 in association with the production of ACT-7, ACC-1, or CMY-42.
CONCLUSION: Although none of the recombinant strains tested displayed clinical resistance to aztreonam-avibactam, our data emphasize that the occurrence of such profile might be of clinical relevance for MBL-producing strains.
METHODS: Here the impact of various plasmid-encoded AmpC-type β-lactamases (ACC-1, ACT-7, ACT-17, CMY-2, CMY-42, DHA-1, FOX-1, and FOX-5) on susceptibility to aztreonam-avibactam was evaluated using isogenic E. coli MG1655 strains harboring insertions in PBP3 (YRIN and YRIK). The inhibitory activity of various β-lactamase inhibitors (clavulanic acid, tazobactam, avibactam, relebactam, and vaborbactam) were also compared against these enzymes.
RESULTS: Hence, we showed that reduced susceptibility to AZA was due to the combined effect of both AmpC production and amino acid insertions in PBP3. The highest resistance level was achieved in strains possessing the insertions in PBP3 in association with the production of ACT-7, ACC-1, or CMY-42.
CONCLUSION: Although none of the recombinant strains tested displayed clinical resistance to aztreonam-avibactam, our data emphasize that the occurrence of such profile might be of clinical relevance for MBL-producing strains.
Full text links
Related Resources
Trending Papers
Cardiogenic shock.Lancet 2024 November 16
A brief review of complex regional pain syndrome and current management.Annals of Medicine 2024 December
Update on Diagnosis and Management of Kawasaki Disease: A Scientific Statement From the American Heart Association.Circulation 2024 November 13
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app