We have located links that may give you full text access.
Blood transcriptome differentiates clinical clusters for asthma.
World Allergy Organization Journal 2024 Februrary
BACKGROUND: In previous studies, several asthma phenotypes were identified using clinical and demographic parameters. Transcriptional phenotypes were mainly identified using sputum and bronchial cells.
OBJECTIVE: We aimed to investigate asthma phenotypes via clustering analysis using clinical variables and compare the transcription levels among clusters using gene expression profiling of the blood.
METHODS: Clustering analysis was performed using 6 parameters: age of asthma onset, body mass index, pack-years of smoking, forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity, and blood eosinophil counts. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples and RNA was extracted from selected PBMCs. Transcriptional profiles were generated (Illumina NovaSeq 6000) and analyzed using the reference genome and gene annotation files (hg19.refGene.gft). Pathway enrichment analysis was conducted using GO, KEGG, and REACTOME databases.
RESULTS: In total, 355 patients with asthma were included in the analysis, of whom 72 (20.3%) had severe asthma. Clustering of the 6 parameters revealed 4 distinct subtypes. Cluster 1 (n = 63) had lower predicted FEV1 % and higher pack-years of smoking and neutrophils in sputum. Cluster 2 (n = 43) had a higher proportion and number of eosinophils in sputum and blood, and severe airflow limitation. Cluster 3 (n = 110) consisted of younger subjects with atopic features. Cluster 4 (n = 139) included features of late-onset mild asthma. Differentially expressed genes between clusters 1 and 2 were related to inflammatory responses and cell activation. Th17 cell differentiation and interferon gamma-mediated signaling pathways were related to neutrophilic inflammation in asthma.
CONCLUSION: Four clinical clusters were differentiated based on clinical parameters and blood eosinophils in adult patients with asthma form the Cohort for Reality and Evolution of Adult Asthma in Korea (COREA) cohort. Gene expression profiling and molecular pathways are novel means of classifying asthma phenotypes.
OBJECTIVE: We aimed to investigate asthma phenotypes via clustering analysis using clinical variables and compare the transcription levels among clusters using gene expression profiling of the blood.
METHODS: Clustering analysis was performed using 6 parameters: age of asthma onset, body mass index, pack-years of smoking, forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity, and blood eosinophil counts. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples and RNA was extracted from selected PBMCs. Transcriptional profiles were generated (Illumina NovaSeq 6000) and analyzed using the reference genome and gene annotation files (hg19.refGene.gft). Pathway enrichment analysis was conducted using GO, KEGG, and REACTOME databases.
RESULTS: In total, 355 patients with asthma were included in the analysis, of whom 72 (20.3%) had severe asthma. Clustering of the 6 parameters revealed 4 distinct subtypes. Cluster 1 (n = 63) had lower predicted FEV1 % and higher pack-years of smoking and neutrophils in sputum. Cluster 2 (n = 43) had a higher proportion and number of eosinophils in sputum and blood, and severe airflow limitation. Cluster 3 (n = 110) consisted of younger subjects with atopic features. Cluster 4 (n = 139) included features of late-onset mild asthma. Differentially expressed genes between clusters 1 and 2 were related to inflammatory responses and cell activation. Th17 cell differentiation and interferon gamma-mediated signaling pathways were related to neutrophilic inflammation in asthma.
CONCLUSION: Four clinical clusters were differentiated based on clinical parameters and blood eosinophils in adult patients with asthma form the Cohort for Reality and Evolution of Adult Asthma in Korea (COREA) cohort. Gene expression profiling and molecular pathways are novel means of classifying asthma phenotypes.
Full text links
Related Resources
Trending Papers
Demystifying normal-anion-gap metabolic acidosis: pathophysiology, aetiology, evaluation and diagnosis.Internal Medicine Journal 2024 July
Nutritional Support in the ICU.BMJ : British Medical Journal 2025 January 2
Accidental Epidural Infusion of Acetaminophen (Paracetamol) During Acute Postoperative and Labor Pain Management.Anesthesia and Analgesia 2024 November 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app