Add like
Add dislike
Add to saved papers

Inactivation of SARS-CoV-2 in serum using physical methods.

Since 2019, many studies on COVID-19, which has caused extensive damage as a pandemic, have been ongoing worldwide. These include serological and biochemical studies using sera from patients and animal models. Testing with these sera must be performed after the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heat treatment, UV irradiation, and/or gamma-ray irradiation are used to inactivate viruses in serum. Determining the inactivation conditions that ensure the inactivation of viruses and minimize the effect on test results after inactivation is important to ensure worker safety and accuracy of test results. In this study, serum samples containing SARS-CoV-2 were subjected to heat, UV irradiation, and gamma irradiation to determine their inactivation conditions. The viral titers were below the detection limit after heating at 56°C for 1 h or 60°C for 15 min, UV-B irradiation with a transilluminator for 30 min, or gamma ray irradiation with 60 Co at 10 kGy. These results provide useful information for safe serological and biochemical experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app