Add like
Add dislike
Add to saved papers

Development and Optimization of a Target Engagement Model of Brain IDO Inhibition for Alzheimer's Disease.

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO1) inhibition is a promising target as an Alzheimer's disease (AD) Disease-modifying therapy capable of downregulating immunopathic neuroinflammatory processes.

METHODS: To aid in the development of IDO inhibitors as potential AD therapeutics, we optimized a lipopolysaccharide (LPS) based mouse model of brain IDO1 inhibition by examining the dosedependent and time-course of the brain kynurenine:tryptophan (K:T) ratio to LPS via intraperitoneal dosing.

RESULTS: We determined the optimal LPS dose to increase IDO1 activity in the brain, and the ideal time point to quantify the brain K:T ratio after LPS administration. We then used a brain penetrant tool compound, EOS200271, to validate the model, determine the optimal dosing profile and found that a complete rescue of the K:T ratio was possible with the tool compound.

CONCLUSION: This LPS-based model of IDO1 target engagement is a useful tool that can be used in the development of brain penetrant IDO1 inhibitors for AD. A limitation of the present study is the lack of quantification of potential clinically relevant biomarkers in this model, which could be addressed in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app