We have located links that may give you full text access.
Recycled pulp and paper sludge, potential source of cellulose: feasibility assessment and characterization.
Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2024 January 29
The pulp and paper industry stands out as an example of a technology based on a renewable resource, cellulose. The sludge, however, poses major environmental and public health problems. To effectively manage the sludge wastes, it is critical to fully evaluate its composition, possible environmental impacts, and the total amount of exploitable renewable resources. The study established the pH of the sludge to be 7.32 ± 0.98, an electrical conductivity (1.84 mS/cm), nitrogen concentration (2.65 ± 0.21%), and total organic matter (41.23 ± 3.11%). The cellulosic content was established to be 74.07 ± 2.71% which contributes to 53.07 ± 1.23% water holding capacity (WHC). The most abundant elements were C and O, followed by Cl, Si, Al, and Mg, with lower concentrations of S, Si, K, and iron. The polycyclic aromatic compounds (PAHs) levels ranged from 0.29 to 322.56 ng.g-1 with 1-methyl pyrene posting the highest concentration (322.56 ng.g-1. XRD peaks at 17.10°, 23.86°, 30.14°, and 36.57°, which imply the existence of CaCO3. SEM indicated that the sludge was majorly comprised of fibers materials with average particle sizes of 280 micrometers. TGA/DTG analysis showed that the sludge had the greatest cellulose and hemicellulose (64.7 wt. %).
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app