We have located links that may give you full text access.
A machine learning approach to differentiate wide QRS tachycardia: distinguishing ventricular tachycardia from supraventricular tachycardia.
Journal of Interventional Cardiac Electrophysiology : An International Journal of Arrhythmias and Pacing 2024 January 22
BACKGROUND: Differential diagnosis of wide QRS tachycardia (WQCT) has been a challenging issue. Published algorithms to distinguish ventricular tachycardia (VT) and supraventricular tachycardia (SVT) have limited diagnostic capabilities.
METHODS: A total of 278 patients with WQCT from January 2010 to March 2022 were enrolled. The electrophysiological study confirmed SVT in 154 patients and VT in 65 ones. Two hundred nineteen WQCT 12-lead ECGs were randomly divided into development cohort (n = 165) and testing cohort (n = 54) data sets. The development cohort was split into a training group (n = 115) and an internal validation group (n = 50). Forty ECG features extracted from the 219 WQCT ECGs are fed into 9 iteratively trained ML algorithms. This novel ML algorithm was also compared with four published algorithms.
RESULTS: In the development cohort, the Gradient Boosting Machine (GBM) model displayed the maximum area under curve (AUC) (0.91, 95% confidence interval (CI) 0.81-1.00). In the testing cohort, the GBM model had a higher AUC of 0.97 compared to 4 validated ECG algorithms, namely, Brugada (0.68), avR (0.62), RWPTII (0.72), and LLA algorithms (0.70). Accuracy, sensitivity, specificity, negative predictive value, and positive predictive value of the GBM model were 0.94, 0.97, 0.90, 0.94, and 0.95, respectively.
CONCLUSIONS: A GBM ML model contributes to distinguishing SVT from VT based on surface ECG features. In addition, we were able to identify important indicators for distinguishing WQCT.
METHODS: A total of 278 patients with WQCT from January 2010 to March 2022 were enrolled. The electrophysiological study confirmed SVT in 154 patients and VT in 65 ones. Two hundred nineteen WQCT 12-lead ECGs were randomly divided into development cohort (n = 165) and testing cohort (n = 54) data sets. The development cohort was split into a training group (n = 115) and an internal validation group (n = 50). Forty ECG features extracted from the 219 WQCT ECGs are fed into 9 iteratively trained ML algorithms. This novel ML algorithm was also compared with four published algorithms.
RESULTS: In the development cohort, the Gradient Boosting Machine (GBM) model displayed the maximum area under curve (AUC) (0.91, 95% confidence interval (CI) 0.81-1.00). In the testing cohort, the GBM model had a higher AUC of 0.97 compared to 4 validated ECG algorithms, namely, Brugada (0.68), avR (0.62), RWPTII (0.72), and LLA algorithms (0.70). Accuracy, sensitivity, specificity, negative predictive value, and positive predictive value of the GBM model were 0.94, 0.97, 0.90, 0.94, and 0.95, respectively.
CONCLUSIONS: A GBM ML model contributes to distinguishing SVT from VT based on surface ECG features. In addition, we were able to identify important indicators for distinguishing WQCT.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app