Add like
Add dislike
Add to saved papers

Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co-activation after stroke: a pilot study.

BACKGROUND: The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors.

METHODS: Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received 6 h of MINT conditioning over six sessions, either in the laboratory or at home.

RESULTS: MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased.

CONCLUSION: MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at (NCT03401762, Registered 15 January 2018, ).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app